Synthetic metabolism: metabolic engineering meets enzyme design
نویسندگان
چکیده
منابع مشابه
Synthetic biology meets tissue engineering
Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. Fo...
متن کاملSynthetic tissue biology: tissue engineering meets synthetic biology.
We propose the term "synthetic tissue biology" to describe the use of engineered tissues to form biological systems with metazoan-like complexity. The increasing maturity of tissue engineering is beginning to render this goal attainable. As in other synthetic biology approaches, the perspective is bottom-up; here, the premise is that complex functional phenotypes (on par with those in whole met...
متن کاملSynthetic metabolons for metabolic engineering.
It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular locatio...
متن کاملToward Engineering Synthetic Microbial Metabolism
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of anal...
متن کاملSynthetic biology and regulatory networks: where metabolic systems biology meets control engineering.
Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Chemical Biology
سال: 2017
ISSN: 1367-5931
DOI: 10.1016/j.cbpa.2016.12.023